One of the difficulties in monitoring an ongoing pandemic is deciding on the metric that best describes its status when multiple highly inter-correlated measurements are available. Having a single measure, such as whether the effective reproduction number R, has been useful in tracking whether the epidemic is on the incline or the decline and for imposing policy interventions to curb the increase. We propose an additional metric for tracking the UK epidemic across all four nations, that can capture the different spatial scales. This paper illustrates how to derive the principal scores from a weighted Principal Component Analysis using publicly available data. We show the detectable impact of interventions on the state of the epidemic and suggest that there is a single dominant trend observable through the principal score, but this is different across nations and waves. For example, the epidemic status can be tracked by cases in Scotland at a countrywide scale, whereas across waves and disjoint nations, hospitalisations are the dominant contributor to principal scores. Thus, our results suggest that hospitalisations may be an additional useful metric for ongoing tracking of the epidemic status across the UK nations alongside R and growth rate.
翻译:监测一个持续流行的流行病的一个困难是,确定在多种高度相互有关的测量数据可供使用时最能说明其状况的衡量标准。如果有一个单一的衡量标准,例如有效的复制号R是否有助于跟踪该流行病是否在直线上或下降,以及采取政策干预措施以遏制该流行病的增加。我们建议在所有四个国家增加一个跟踪联合王国流行病的衡量标准,可以捕捉不同的空间尺度。本文说明如何利用公开的数据从加权主要组成部分分析中得出主要分数。我们显示了干预措施对该流行病状况的可探测影响,并表明主要分数存在一种单一的主导趋势,但各国和各种波都有所不同。例如,在苏格兰,流行病状况可以在全国范围内由病例跟踪,而在整个波浪和不相连的国家,住院是主要分数的主要因素。因此,我们的结果表明,住院可能是继续跟踪全英国各国流行病状况以及R和增长率的又一个有用的衡量标准。