The modeling and analysis of degradation data have been an active research area in reliability and system health management. As the senor technology advances, multivariate sensory data are commonly collected for the underlying degradation process. However, most existing research on degradation modeling requires a univariate degradation index to be provided. Thus, constructing a degradation index for multivariate sensory data is a fundamental step in degradation modeling. In this paper, we propose a novel degradation index building method for multivariate sensory data. Based on an additive nonlinear model with variable selection, the proposed method can automatically select the most informative sensor signals to be used in the degradation index. The penalized likelihood method with adaptive group penalty is developed for parameter estimation. We demonstrate that the proposed method outperforms existing methods via both simulation studies and analyses of the NASA jet engine sensor data.
翻译:降解数据的建模和分析是可靠性和系统健康管理方面一个积极的研究领域。随着静态技术的进步,通常为基础降解过程收集多变感官数据。然而,大多数关于降解模型的现有研究都需要提供一种单变体降解指数。因此,为多变感官数据建立退化指数是退化模型的一个根本步骤。在本文件中,我们为多变感官数据提出了一个新的退化指数构建方法。根据具有变量选择的添加型非线性模型,拟议方法可以自动选择在降解指数中使用的最丰富的信息感应信号。为参数估计而制定有适应性集体处罚的受罚可能性方法。我们证明,拟议方法通过模拟研究和分析美国航天局的喷气发动机传感器数据,优于现有方法。