The recently developed dynamic discretization discovery (DDD) is a powerful method that allows many time-dependent problems to become more tractable. While DDD has been applied to a variety of problems, one particular challenge has been to deal with storage constraints without leading to a weak relaxation in each iteration. Specifically, the current approach to deal with certain hard storage constraints in continuous settings is to remove a subset of the storage constraints completely in each iteration of DDD. In this work, we show that for discrete problems, such weak relaxations are not necessary. Specifically, we find bounds on the additional storage that must be permitted in each iteration. We demonstrate our techniques in the case of the classical universal packet routing problem in the presence of bounded node storage, which can currently only be solved via integer programming. We present computational results demonstrating the effectiveness of DDD when solving universal packet routing.


翻译:最近开发的动态离散发现(DDD)是一种强有力的方法,它使许多有时间依赖的问题变得更加容易处理。虽然DDD已经应用于各种问题,但一个特别的挑战就是处理储存限制,而不会导致每次循环的松散。具体地说,目前处理连续环境中某些硬储存限制的方法是完全消除DDD每次迭代中储存限制的子集。在这项工作中,我们表明,对于离散问题,这种微弱的放松是没有必要的。具体地说,我们发现在每次迭代中必须允许的额外储存的界限。我们展示了在传统通用包路由问题的情况下我们的技术,目前只有通过整数编程才能解决。我们提出了计算结果,表明DDDD在解决通用包路由时的有效性。</s>

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月23日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
100+阅读 · 2020年3月4日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员