"Transcription bottlenecks", created by a shortage of effective human transcribers are one of the main challenges to endangered language (EL) documentation. Automatic speech recognition (ASR) has been suggested as a tool to overcome such bottlenecks. Following this suggestion, we investigated the effectiveness for EL documentation of end-to-end ASR, which unlike Hidden Markov Model ASR systems, eschews linguistic resources but is instead more dependent on large-data settings. We open source a Yolox\'ochitl Mixtec EL corpus. First, we review our method in building an end-to-end ASR system in a way that would be reproducible by the ASR community. We then propose a novice transcription correction task and demonstrate how ASR systems and novice transcribers can work together to improve EL documentation. We believe this combinatory methodology would mitigate the transcription bottleneck and transcriber shortage that hinders EL documentation.
翻译:由于缺少有效的人类翻译器,造成“分类瓶颈”,这是濒危语言(EL)文件面临的主要挑战之一。自动语音识别(ASR)被建议为克服这些瓶颈的工具。根据这项建议,我们调查了终端到终端ASR的EL文件的有效性,这不同于隐藏的Markov模式ASR系统,回避语言资源,而是更依赖于大数据设置。我们打开了一个“Yolox\'ochitl Mixtec ELC ”源。首先,我们审查了我们建立端到端的ASR系统的方法,这样可以让ASR社区重新复制。我们然后提出一个新抄录更正任务,并演示ASR系统和新翻译器如何能够共同改进EL文件。我们认为,这种调试方法可以减少阻碍EL文件的转录瓶颈和转译器短缺。