Recently, significant progress has been made in face presentation attack detection (PAD), which aims to secure face recognition systems against presentation attacks, owing to the availability of several face PAD datasets. However, all available datasets are based on privacy and legally-sensitive authentic biometric data with a limited number of subjects. To target these legal and technical challenges, this work presents the first synthetic-based face PAD dataset, named SynthASpoof, as a large-scale PAD development dataset. The bona fide samples in SynthASpoof are synthetically generated and the attack samples are collected by presenting such synthetic data to capture systems in a real attack scenario. The experimental results demonstrate the feasibility of using SynthASpoof for the development of face PAD. Moreover, we boost the performance of such a solution by incorporating the domain generalization tool MixStyle into the PAD solutions. Additionally, we showed the viability of using synthetic data as a supplement to enrich the diversity of limited authentic training data and consistently enhance PAD performances. The SynthASpoof dataset, containing 25,000 bona fide and 78,800 attack samples, the implementation, and the pre-trained weights are made publicly available.


翻译:近年来,由于面部 PAD 数据集的可用性,面部展示攻击(PAD) 检测取得了重要进展。然而,所有可用的数据集都是基于隐私和法律敏感的真实生物特征数据,受限于受试者人数。为了解决这些法律和技术挑战,本文提出了第一个基于合成数据的面部 PAD 数据集:SynthASpoof,作为大规模 PAD 开发数据集。SynthASpoof 中的真实样本是通过合成生成的,攻击样本是通过在真实攻击场景中提交这些合成数据而收集的。实验结果表明,SynthASpoof 可用于开发面部 PAD。此外,我们通过将领域泛化工具 MixStyle 融入到 PAD 解决方案中,提高了该解决方案的性能。另外,我们展示了使用合成数据作为真实训练数据的补充,以增加有限真实训练数据的多样性并持续提高 PAD 性能的可行性。包含25,000 个真实样本和78,800 个攻击样本的 SynthASpoof 数据集、实现和预训练权重已公开可用。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2021年4月12日
专知会员服务
41+阅读 · 2020年10月13日
【KDD2020-Google】动态图设计的图学习
专知会员服务
35+阅读 · 2020年7月28日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
WWW2022 | Recommendation Unlearning
机器学习与推荐算法
0+阅读 · 2022年6月2日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月28日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
WWW2022 | Recommendation Unlearning
机器学习与推荐算法
0+阅读 · 2022年6月2日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员