Optical Coherence Tomography Angiography (OCTA) is a non-invasive and non-contacting imaging technique providing visualization of microvasculature of retina and optic nerve head in human eyes in vivo. The adequate image quality of OCTA is the prerequisite for the subsequent quantification of retinal microvasculature. Traditionally, the image quality score based on signal strength is used for discriminating low quality. However, it is insufficient for identifying artefacts such as motion and off-centration, which rely specialized knowledge and need tedious and time-consuming manual identification. One of the most primary issues in OCTA analysis is to sort out the foveal avascular zone (FAZ) region in the retina, which highly correlates with any visual acuity disease. However, the variations in OCTA visual quality affect the performance of deep learning in any downstream marginally. Moreover, filtering the low-quality OCTA images out is both labor-intensive and time-consuming. To address these issues, we develop an automated computer-aided OCTA image processing system using deep neural networks as the classifier and segmentor to help ophthalmologists in clinical diagnosis and research. This system can be an assistive tool as it can process OCTA images of different formats to assess the quality and segment the FAZ area. The source code is freely available at https://github.com/shanzha09/COIPS.git. Another major contribution is the large-scale OCTA dataset, namely OCTA-25K-IQA-SEG we publicize for performance evaluation. It is comprised of four subsets, namely sOCTA-3$\times$3-10k, sOCTA-6$\times$6-14k, sOCTA-3$\times$3-1.1k-seg, and dOCTA-6$\times$6-1.1k-seg, which contains a total number of 25,665 images. The large-scale OCTA dataset is available at https://doi.org/10.5281/zenodo.5111975, https://doi.org/10.5281/zenodo.5111972.


翻译:光学成像仪(OCTA)是一种非侵入性、非侵入性、525美元至1美元至1美元至3美元不等的成像技术。OCTA分析中最主要的问题之一是将视网膜和视光神经头的微血管区域(FAZ)进行分解。OCTA的适当图像质量是随后量化视网膜微血管疾病的先决条件。传统上,基于信号强度的图像质量评分被用于区分低质量。然而,过滤低质量的OCTA图像既需要专门知识,也需要耗时的人工识别。为了解决这些问题,我们开发了一个自动计算机辅助的OCTA图象处理系统,使用深线心血管网络(FAZ),这与任何视觉微血管疾病高度相关。但是OCTA的视觉质量评分影响下游任何深度学习的绩效。此外,对低质量的OCTA图像进行筛选既耗时又耗时又耗时。

0
下载
关闭预览

相关内容

超文本传输安全协议是超文本传输协议和 SSL/TLS 的组合,用以提供加密通讯及对网络服务器身份的鉴定。
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员