Deep segmentation neural networks require large training datasets with pixel-wise segmentations, which are expensive to obtain in practice. Mixed supervision could mitigate this difficulty, with a small fraction of the data containing complete pixel-wise annotations, while the rest being less supervised, e.g., only a handful of pixels are labeled. In this work, we propose a dual-branch architecture, where the upper branch (teacher) receives strong annotations, while the bottom one (student) is driven by limited supervision and guided by the upper branch. In conjunction with a standard cross-entropy over the labeled pixels, our novel formulation integrates two important terms: (i) a Shannon entropy loss defined over the less-supervised images, which encourages confident student predictions at the bottom branch; and (ii) a Kullback-Leibler (KL) divergence, which transfers the knowledge from the predictions generated by the strongly supervised branch to the less-supervised branch, and guides the entropy (student-confidence) term to avoid trivial solutions. Very interestingly, we show that the synergy between the entropy and KL divergence yields substantial improvements in performances. Furthermore, we discuss an interesting link between Shannon-entropy minimization and standard pseudo-mask generation and argue that the former should be preferred over the latter for leveraging information from unlabeled pixels. Through a series of quantitative and qualitative experiments, we show the effectiveness of the proposed formulation in segmenting the left-ventricle endocardium in MRI images. We demonstrate that our method significantly outperforms other strategies to tackle semantic segmentation within a mixed-supervision framework. More interestingly, and in line with recent observations in classification, we show that the branch trained with reduced supervision largely outperforms the teacher.


翻译:深度分割神经网络需要大量的培训数据集, 其数量偏差值在实践上是昂贵的。 混合监督可以缓解这一困难, 有一小部分数据包含完整的像素说明, 而其他的则没有那么受到监督, 例如, 只有少数像素被贴上标签。 在这项工作中, 我们提出一个双部门架构, 由上分支( 教师) 接收强烈的注释, 而下分支( 学生) 则由有限的监督驱动, 并由上分支 指导。 结合标签像素的标准化交叉成份, 我们的新结构将两个重要术语整合在一起 :( 一) 香农变色丢失, 由不那么受监督的图像来定义, 而其他像样结构( 教师) 的上部( 教师) 接收强烈的注释, 而下部( 学生) 则在上层结构中传递知识, 并且用不甚精细的图像( 测试) 术语来避免微不足道的最近观测结果 。 有趣的是, 我们展示了后级变变的系统 。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
40+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
29+阅读 · 2020年5月19日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
专知会员服务
110+阅读 · 2020年3月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Temporal Action Detection with Multi-level Supervision
Arxiv
0+阅读 · 2021年2月16日
Arxiv
6+阅读 · 2018年6月21日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
40+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
29+阅读 · 2020年5月19日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
专知会员服务
110+阅读 · 2020年3月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员