Uncertainty quantification (UQ) over graphs arises in a number of safety-critical applications in network science. The Gaussian process (GP), as a classical Bayesian framework for UQ, has been developed to handle graph-structured data by devising topology-aware kernel functions. However, such GP-based approaches are limited not only by the prohibitive computational complexity, but also the strict modeling assumptions that might yield poor coverage, especially with labels arriving on the fly. To effect scalability, we devise a novel graph-aware parametric GP model by leveraging the random feature (RF)-based kernel approximation, which is amenable to efficient recursive Bayesian model updates. To further allow for adaptivity, an ensemble of graph-aware RF-based scalable GPs have been leveraged, with per-GP weight adapted to data arriving incrementally. To ensure valid coverage with robustness to model mis-specification, we wed the GP-based set predictors with the online conformal prediction framework, which post-processes the prediction sets using adaptive thresholds. Experimental results the proposed method yields improved coverage and efficient prediction sets over existing baselines by adaptively ensembling the GP models and setting the key threshold parameters in CP.
翻译:暂无翻译