In today's world, the Internet is recognized as one of the essentials of human life, playing a significant role in communications, business, and lifestyle. The quality of internet services can have widespread negative impacts on individual and social levels. Consequently, Quality of Service (QoS) has become a fundamental necessity for service providers in a competitive market aiming to offer superior services. The success and survival of these providers depend on their ability to maintain high service quality and ensure satisfaction.Alongside QoS, the concept of Quality of Experience (QoE) has emerged with the development of telephony networks. QoE focuses on the user's satisfaction with the service, helping operators adjust their services to meet user expectations. Recent research shows a trend towards utilizing machine learning and deep learning techniques to predict QoE. Researchers aim to develop accurate models by leveraging large volumes of data from network and user interactions, considering various real-world scenarios. Despite the complexity of network environments, this research provides a practical framework for improving and evaluating QoE. This study presents a comprehensive framework for evaluating QoE in multimedia services, adhering to the ITU-T P.1203 standard which includes automated data collection processes and uses machine learning algorithms to predict user satisfaction based on key network parameters. By collecting over 20,000 data records from different network conditions and users, the Random Forest model achieved a prediction accuracy of 95.8% for user satisfaction. This approach allows operators to dynamically allocate network resources in real-time, maintaining high levels of customer satisfaction with minimal costs.
翻译:暂无翻译