In today's world, the Internet is recognized as one of the essentials of human life, playing a significant role in communications, business, and lifestyle. The quality of internet services can have widespread negative impacts on individual and social levels. Consequently, Quality of Service (QoS) has become a fundamental necessity for service providers in a competitive market aiming to offer superior services. The success and survival of these providers depend on their ability to maintain high service quality and ensure satisfaction.Alongside QoS, the concept of Quality of Experience (QoE) has emerged with the development of telephony networks. QoE focuses on the user's satisfaction with the service, helping operators adjust their services to meet user expectations. Recent research shows a trend towards utilizing machine learning and deep learning techniques to predict QoE. Researchers aim to develop accurate models by leveraging large volumes of data from network and user interactions, considering various real-world scenarios. Despite the complexity of network environments, this research provides a practical framework for improving and evaluating QoE. This study presents a comprehensive framework for evaluating QoE in multimedia services, adhering to the ITU-T P.1203 standard which includes automated data collection processes and uses machine learning algorithms to predict user satisfaction based on key network parameters. By collecting over 20,000 data records from different network conditions and users, the Random Forest model achieved a prediction accuracy of 95.8% for user satisfaction. This approach allows operators to dynamically allocate network resources in real-time, maintaining high levels of customer satisfaction with minimal costs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员