In this work, Bayesian inversion with global-local forwards models is used to identify the parameters based on hydraulic fractures in porous media. It is well-known that using Bayesian inversion to identify material parameters is computationally expensive. Although each sampling may take more than one hour, thousands of samples are required to capture the target density. Thus, instead of using fine-scale high-fidelity simulations, we use a non-intrusive global-local (GL) approach for the forward model. We further extend prior work to a large deformation setting based on the Neo-Hookean strain energy function. The resulting framework is described in detail and substantiated with some numerical tests.
翻译:本文采用全局-局部前向模型结合贝叶斯反演分别对多孔介质中的水力裂缝进行了参数识别。众所周知,使用贝叶斯反演方法在材料参数识别方面计算代价巨大。虽然每个抽样过程可能需要一个小时以上,大约需要数千个样本来捕获目标密度。因此,我们使用非入侵式全局-局部方法来建立前向模型,而非使用细度高保真度的仿真模型。我们进一步将先前的工作扩展到了基于Neo-Hookean应变能函数的大变形设置中。该框架得到了详细的描述,并通过一些数值测试进行了验证。