Domain shift in digital histopathology can occur when different stains or scanners are used, during stain translation, etc. A deep neural network trained on source data may not generalise well to data that has undergone some domain shift. An important step towards being robust to domain shift is the ability to detect and measure it. This article demonstrates that the PixelCNN and domain shift metric can be used to detect and quantify domain shift in digital histopathology, and they demonstrate a strong correlation with generalisation performance. These findings pave the way for a mechanism to infer the average performance of a model (trained on source data) on unseen and unlabelled target data.
翻译:在使用不同污点或扫描仪时,在污点翻译过程中等情况下,数字病理学的域变可能发生。受过源数据培训的深层神经网络可能无法很好地概括到经过某种域变的数据。要对域变强发挥强大作用的一个重要步骤是检测和测量域变的能力。这一条表明,像素CNN和域变换指标可以用来检测和量化数字病理学的域变,并表明它们与一般化性能有很强的关联。这些结果为推断(经过源数据培训的)关于无形和无标签目标数据的模型的平均性能的机制铺平了道路。