Underground gas storage is a versatile tool for managing energy resources and addressing pressing environmental concerns. While natural gas is stored in geological formations since the beginning of the 20th century, hydrogen has recently been considered as a potential candidate toward a more flexible and sustainable energy infrastructure. Furthermore, these formations can also be used to sequester environmentally harmful gases such as CO2. When such operations are implemented in faulted basins, however, safety concerns may arise due to the possible reactivation of pre-existing faults, which could result in (micro)-seismicity events. In the Netherlands, it has been recently noted that fault reactivation can occur "unexpectedly" during the life of an underground gas storage (UGS) site, even when stress conditions are not expected to cause a failure. The present two-part work aims to develop a modeling framework to investigate the physical mechanisms causing such occurrences and define a safe operational bandwidth for pore pressure variation for UGS operations in the faulted reservoirs of the Rotliegend formation, the Netherlands. In this follow-up paper, we investigate in detail the mechanisms and crucial factors that result in fault reactivation at various stages of a UGS. The mathematical and numerical model described in Part I is used, also accounting for the effect of geochemical dissolution on reservoir and caprock weakening. TThe study investigates the risks of fault activation caused by the storage of different fluids for various purposes, such as long-term CO2 sequestration, CH4 and N2 injection and extraction cycles, and N2 permanent storage. The results show how geomechanical properties and reservoir operating conditions may increase the risk of fault reactivation at various UGS stages. Finally, operational guidelines for improving secure storage operations are presented.
翻译:暂无翻译