In this paper we introduce classically time-controlled quantum automata or CTQA, which is a reasonable modification of Moore-Crutchfield quantum finite automata that uses time-dependent evolution and a "scheduler" defining how long each Hamiltonian will run. Surprisingly enough, time-dependent evolution provides a significant change in the computational power of quantum automata with respect to a discrete quantum model. Indeed, we show that if a scheduler is not computationally restricted, then a CTQA can decide the Halting problem. In order to unearth the computational capabilities of CTQAs we study the case of a computationally restricted scheduler. In particular we showed that depending on the type of restriction imposed on the scheduler, a CTQA can (i) recognize non-regular languages with cut-point, even in the presence of Karp-Lipton advice, and (ii) recognize non-regular languages with bounded-error. Furthermore, we study the closure of concatenation and union of languages by introducing a new model of Moore-Crutchfield quantum finite automata with a rotating tape head. CTQA presents itself as a new model of computation that provides a different approach to a formal study of "classical control, quantum data" schemes in quantum computing.
翻译:在本文中,我们引入了传统时间控制的量子自动数据或 CTQA, 这是一种对摩尔- 克鲁契菲尔德量子有限量子自动数据的合理修改, 它使用时间的进化和“ 缓冲” 定义每个汉密尔顿人运行的时间长度。 奇怪的是, 时间的进化为量子量模型的计算能力提供了巨大的变化。 事实上, 我们显示, 如果一个调度器没有计算上的限制, 那么CTQA就可以决定终止问题。 为了挖掘摩尔- 克鲁奇菲尔德量子量子有限量子自动调节器的计算能力, 我们研究了计算受限的排程器案例。 特别是, 我们显示, CTQA根据对排程的限制类型, CT 能够( 一) 承认有切分点的非常规语言的计算能力。 即便有Karp- Lipton 的建议, 并且 (二) 承认非常规语言与受约束的高度语言。 此外, 我们通过引入一个新的摩尔- 库茨基域限制量子自动自动计算方法, 提供一种不同的磁带化的正式计算法。