Classical shadow tomography provides an efficient method for predicting functions of an unknown quantum state from a few measurements of the state. It relies on a unitary channel that efficiently scrambles the quantum information of the state to the measurement basis. Facing the challenge of realizing deep unitary circuits on near-term quantum devices, we explore the scenario in which the unitary channel can be shallow and is generated by a quantum chaotic Hamiltonian via time evolution. We provide an unbiased estimator of the density matrix for all ranges of the evolution time. We analyze the sample complexity of the Hamiltonian-driven shadow tomography. We find that it can be more efficient than the unitary-2-design-based shadow tomography in a sequence of intermediate time windows that range from an order-1 scrambling time to a time scale of $D^{1/6}$, given the Hilbert space dimension $D$. In particular, the efficiency of predicting diagonal observables is improved by a factor of $D$ without sacrificing the efficiency of predicting off-diagonal observables.


翻译:经典影子断层法提供了一种有效的方法,从对状态的几处测量中预测未知量子状态的功能。 它依赖于一个能有效调和状态量子信息的单一信道, 并基于测量基础。 面对在近期量子装置上实现深单电路的挑战, 我们探索一个单电路可以浅的情景, 并且是由量子混乱的汉密尔顿人通过时间演进生成的。 我们为进化时间的所有范围提供一个不偏倚的密度矩阵估计器。 我们分析了汉密尔顿人驱动的影子摄影的样本复杂性。 我们发现, 在从一个命令-1的倾斜时间到一个时间尺度为$D1/6的中间时间窗口序列中, 它可以比一个以单电二设计为基础的光影摄影系统的效率更高, 从一个命令-1的倾斜度时间到一个时标为$D1/6美元的时间尺度。 特别是, 预测三角观测的效率通过一个以$D的系数得到提高, 但不牺牲预测直角观测的效率。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
已删除
将门创投
5+阅读 · 2019年9月10日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
Top
微信扫码咨询专知VIP会员