We present a novel quantum algorithm for solving the unstructured search problem with one marked element. Our algorithm allows generating quantum circuits that use asymptotically fewer additional quantum gates than the famous Grover's algorithm and may be successfully executed on NISQ devices. We prove that our algorithm is optimal in the total number of elementary gates up to a multiplicative constant. As many NP-hard problems are not in fact unstructured, we also describe the \emph{partial uncompute} technique which exploits the oracle structure and allows a significant reduction in the number of elementary gates required to find the solution. Combining these results allows us to use asymptotically smaller number of elementary gates than the Grover's algorithm in various applications, keeping the number of queries to the oracle essentially the same. We show how the results can be applied to solve hard combinatorial problems, for example Unique k-SAT. Additionally, we show how to asymptotically reduce the number of elementary gates required to solve the unstructured search problem with multiple marked elements.
翻译:我们提出了一个新的量子算法,用一个标记元素来解决无结构的搜索问题。我们的算法允许生成量子电路,使用比著名的格罗佛的算法少得多的量子门,并且可以在新谢克设备上成功执行。我们证明我们的算法在基本门的总数中是最佳的,直到一个多倍化的常数。由于许多NP-硬性的问题实际上并不是没有结构的,我们还描述了利用甲骨骼结构并允许大量减少寻找解决方案所需的基本门数的计算技术。这些结果的结合使我们能够在各种应用中使用比格罗佛的算法少的量,使质子的查询数量基本上保持相同。我们展示了如何将结果应用于解决硬调理问题,例如Unique k-SAT。此外,我们展示了如何用多标记元素不结构化地减少解决未结构的搜索问题所需的基本门数。