We introduce a high-order finite element formulation (high-order basis) for elastodynamic simulation on high-order (curved) meshes based on the recently proposed Incremental Potential Contact model. High-order meshes provide a more accurate geometrical approximation of the object boundary (where stress usually concentrates, especially in the presence of contacts) than linear elements, for a negligible additional cost when used in a finite element simulation. High-order bases provide major advantages over linear ones in terms of efficiency, as they provide higher accuracy for the same running time, and reliability, as they are less affected by locking artifacts and mesh quality. Our approach is based on the observation that each IPC optimization step used to minimize the elasticity, contact, and friction potentials leads to linear trajectories even in the presence of non-linear meshes or non-linear FE basis. It is thus possible to retain the strong non-penetration guarantees and large time steps of the original formulation while benefiting from the high-order basis and high-order geometry. Additionally, we show that collision proxies can be naturally incorporated into this formulation. We demonstrate the effectiveness of our approach in a selection of problems from graphics, computational fabrication, and scientific computing.


翻译:我们根据最近提出的递增潜力接触模型,对高阶(弯曲)贝壳的速流模拟采用高阶有限元素配方(高阶基础),对高阶(弯曲)贝壳的速流动力模拟采用高阶定值(高阶基础),高阶间贝比线性元素提供比线性元素更精确的几何近度(压力通常集中,特别是在有接触的情况下),以在有限元素模拟中使用的可忽略不计的额外费用;高阶基础在效率方面比线性基础提供比线性大得多的优势,因为它们为同一运行时间提供了更高的精确度和可靠性,因为它们较少受到锁定文物和网状质量的影响;我们的方法是基于以下观察:即为尽量减少弹性、接触和摩擦潜力而使用的每个IPC优化步骤,即使存在非线性中间线或非线性FE基础,也会导致线性轨迹。因此,有可能保留强的不穿透保证和原始配方的长步骤,同时从高序基础和高档次的几何测量中获益。此外,我们表明,碰撞前方位相偏差方法可以自然地纳入我们的图像的计算方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员