Probabilistic graphical models provide a flexible yet parsimonious framework for modeling dependencies among nodes in networks. There is a vast literature on parameter estimation and consistent model selection for graphical models. However, in many of the applications, scientists are also interested in quantifying the uncertainty associated with the estimated parameters and selected models, which current literature has not addressed thoroughly. In this paper, we propose a novel estimator for statistical inference on edge parameters in pairwise graphical models based on generalized Hyv\"arinen scoring rule. Hyv\"arinen scoring rule is especially useful in cases where the normalizing constant cannot be obtained efficiently in a closed form, which is a common problem for graphical models, including Ising models and truncated Gaussian graphical models. Our estimator allows us to perform statistical inference for general graphical models whereas the existing works mostly focus on statistical inference for Gaussian graphical models where finding normalizing constant is computationally tractable. Under mild conditions that are typically assumed in the literature for consistent estimation, we prove that our proposed estimator is $\sqrt{n}$-consistent and asymptotically normal, which allows us to construct confidence intervals and build hypothesis tests for edge parameters. Moreover, we show how our proposed method can be applied to test hypotheses that involve a large number of model parameters simultaneously. We illustrate validity of our estimator through extensive simulation studies on a diverse collection of data-generating processes.


翻译:概率性图形模型为网络节点之间的依赖性建模提供了一个灵活而模糊的框架。 关于参数估计和图形模型的一致模型选择, 有大量文献关于参数估计和一致模型选择的模型。 然而, 在许多应用中, 科学家也有兴趣量化与估计参数和选定模型有关的不确定性, 而当前文献尚未彻底解决这些不确定性。 在本文件中, 我们提出了一个基于通用 Hyv\'arinenn 评分规则的双向图形模型中边缘参数统计推断的新估算符。 Hyv\'arinen 评分规则对于无法以封闭形式有效获得正常化常数的常态常态值特别有用, 这是图形模型的共同问题, 包括Ising 模型和松散的高标图形模型。 我们的估测算让我们对一般图形模型进行统计推导, 而目前的工作则主要侧重于高斯图形模型的统计推推推导, 找到正常化常态常态常态常态的常态。 在文献中通常假设的低度参数下, 我们证明我们提议的定的常态常态常态常变常态常态常态常变常态常态常态常态常值常值常值常值常值常值常值常值常值常值常值常值常值,, 我们的测值的测值的测算的常值可使我们的测度性测测测测测测的测的测度性测度的测, 的测的测度可让我们性测度可使我们性测度可使我们的测度可让我们度, 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
7+阅读 · 2018年4月21日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员