Linear type systems need to keep track of how programs use their resources. The standard approach is to use context splits specifying how resources are (disjointly) split across subterms. In this approach, context splits redundantly echo information which is already present within subterms. An alternative approach is to use leftover typing, where in addition to the usual (input) usage context, typing judgments have also an output usage context: the leftovers. In this approach, the leftovers of one typing derivation are fed as input to the next, threading through linear resources while avoiding context splits. We use leftover typing to define a type system for a resource-aware {\pi}-calculus, a process algebra used to model concurrent systems. Our type system is parametrised over a set of usage algebras that are general enough to encompass shared types (free to reuse and discard), graded types (use exactly n number of times) and linear types (use exactly once). Linear types are important in the {\pi}-calculus: they ensure privacy and safety of communication and avoid race conditions, while graded and shared types allow for more flexible programming. We provide a framing theorem for our type system, generalise the weakening and strengthening theorems to include linear types, and prove subject reduction. Our formalisation is fully mechanised in about 1850 lines of Agda.


翻译:线性系统需要跟踪程序如何使用其资源。 标准的方法是使用上下文分割来说明资源是如何( 不同地) 在不同子术语之间分割的。 在这种方式中, 上下文将多余的回声信息分割为子术语中已经存在的信息。 另一种办法是使用剩余打字, 除了通常( 投入) 使用背景之外, 打字判断还包含输出使用背景: 剩余部分 。 在这种方式中, 一个打字衍生的剩余部分被输入到下一个输入中, 通过线性资源串线性串行, 避免上下文分割 。 我们使用剩余打字来定义一种资源认知 {pi} 计算系统的类型, 这是一种用于模拟并行系统的过程代数。 我们的型号系统与一套通用的用法代数相近, 包括共享类型( 自由再利用和抛弃) 、 分级类型( 准确使用 n 次数) 和线性类型( 一次使用)。 线性类型在 缩略图中很重要 。 我们的缩略图类型中确保通信的隐私和安全性, 并避免 缩略式 类型 。 将 我们的系统 类型, 升级类型 和 将 升级类型, 将 我们的 升级 类型, 和 的 打印类型 和 以 升级 升级 类型 类型, 升级类型,,,,,,,, 升级类型,,, 和, 升级类型, 和 升级,,,, 类型,,,, 类型,,,,,,,,,,,,,,,,,,,,,,,, 类型 类型 类型 类型 类型 类型 类型,, 类型,,, 类型,,,,,, 类型 类型 类型 类型 类型,,, 和,,,, 类型 类型,,,,,,,,,,,, 和 类型 类型

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
116+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年4月2日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
116+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员