In this paper, we suggest a novel method for detecting mortality deceleration. We focus on the gamma-Gompertz frailty model and suggest the subtraction of a penalty in the log-likelihood function as an alternative to traditional likelihood inference and hypothesis testing. Over existing methods, our method offers advantages, such as avoiding the use of a p-value, hypothesis testing, and asymptotic distributions. We evaluate the performance of our approach by comparing it with traditional likelihood inference on both simulated and real mortality data. Results have shown that our approach is more accurate in detecting mortality deceleration and provides more reliable estimates of the underlying parameters. The proposed method is a significant contribution to the literature as it offers a powerful tool for analyzing mortality patterns.
翻译:在本文中,我们提出了一种新颖的方法来检测死亡率减缓。我们专注于gamma-Gompertz脆弱性模型,并建议减去对数似然函数中的惩罚项,作为传统最大似然推断和假设检验的替代方法。与现有方法相比,我们的方法具有优点,如避免使用p值、假设检验和渐近分布。我们通过在模拟和真实死亡数据上与传统的最大似然推断进行比较来评估我们方法的性能。结果表明,我们的方法在检测死亡率减缓方面更准确,并提供了更可靠的参数估计。这种提出的方法是文献中的一个重要贡献,因为它为分析死亡率模式提供了一种强有力的工具。