$1$-parameter persistent homology, a cornerstone in Topological Data Analysis (TDA), studies the evolution of topological features such as connected components and cycles hidden in data. It has been applied to enhance the representation power of deep learning models, such as Graph Neural Networks (GNNs). To enrich the representations of topological features, here we propose to study $2$-parameter persistence modules induced by bi-filtration functions. In order to incorporate these representations into machine learning models, we introduce a novel vector representation called Generalized Rank Invariant Landscape \textsc{Gril} for $2$-parameter persistence modules. We show that this vector representation is $1$-Lipschitz stable and differentiable with respect to underlying filtration functions and can be easily integrated into machine learning models to augment encoding topological features. We present an algorithm to compute the vector representation efficiently. We also test our methods on synthetic and benchmark graph datasets, and compare the results with previous vector representations of $1$-parameter and $2$-parameter persistence modules.
翻译:$1$-维持久化同调是拓扑数据分析(TDA)中的基石,它研究了数据中隐藏的连通组件和环等拓扑特征的演化。它已被应用于增强深度学习模型,例如图形神经网络(GNN)。为了丰富拓扑特征的表示,我们在此提出通过双滤波函数诱导的 $2$-维持久化模块的研究。为了将这些表示加入机器学习模型,我们引入了一种新的向量表示方法称为广义秩不变景观 $\textsc{Gril}$,它对底层过滤函数是 $1$-Lipschitz 稳定和可微的,并且可以轻松地集成到机器学习模型中以增强对拓扑特征的编码。我们提出了一种高效计算向量表示的算法。我们还在合成和基准图数据集上测试了我们的方法,并将结果与之前的 $1$-维和 $2$-维持久化模块的向量表示进行了比较。