Natural image stitching (NIS) aims to create one natural-looking mosaic from two overlapping images that capture the same 3D scene from different viewing positions. Challenges inevitably arise when the scene is non-planar and the camera baseline is wide, since parallax becomes not negligible in such cases. In this paper, we propose a novel NIS method using depth maps, which generates natural-looking mosaics against parallax in both overlapping and non-overlapping regions. Firstly, we construct a robust fitting method to filter out the outliers in feature matches and estimate the epipolar geometry between input images. Then, we draw a triangulation of the target image and estimate multiple local homographies, one per triangle, based on the locations of their vertices, the rectified depth values and the epipolar geometry. Finally, the warping image is rendered by the backward mapping of piece-wise homographies. Panorama is then produced via average blending and image inpainting. Experimental results demonstrate that the proposed method not only provides accurate alignment in the overlapping regions but also virtual naturalness in the non-overlapping region.


翻译:自然图像缝合(NIS)的目的是从从从不同观察位置拍摄同一三维场景的两张重叠图像中产生一个自然看起来的马赛克。当场为非平面,相机基线宽度大时,必然会出现挑战。在本文中,我们建议采用一个新的新颖的NIS方法,使用深度地图,产生自然看起来的马赛克,在重叠和不重叠的区域对准parlax。首先,我们构建一个强大的适当方法,以过滤地貌匹配的外部线,并估计输入图像之间的上皮层几何学。然后,我们根据目标图像的脊椎位置、经校正的深度值和上皮线地理测量,对目标图像进行三角形进行三角测量,并估计多个本地同系。最后,扭曲图像是通过对片状同质谱的反射图绘制的。然后通过平均混合和图像对整形生成的。实验结果表明,拟议的方法不仅在重叠区域提供准确的对齐,而且在非重叠区域提供虚拟自然性。

0
下载
关闭预览

相关内容

图像拼接(image stitching)是指将两张或更多的有重叠部分的影像,拼接成一张全景图或是高分辨率影像的技术。图像拼接有两大步骤:图像配准和图像融合
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员