This paper introduces two architectures for the inference of convolutional neural networks (CNNs). Both architectures exploit weight sparsity and compression to reduce computational complexity and bandwidth. The first architecture uses multiply-accumulators (MACs) but avoids unnecessary multiplications by skipping zero weights. The second architecture exploits weight sparsity at the level of their bit representation by substituting resource-intensive MACs with much smaller Bit Layer Multiply Accumulators (BLMACs). The use of BLMACs also allows variable precision weights as variable size integers and even floating points. Some details of an implementation of the second architecture are given. Weight compression with arithmetic coding is also discussed as well as bandwidth implications. Finally, some implementation results for a pathfinder design and various technologies are presented.


翻译:本文介绍了两种神经神经网络(CNNs)的推论结构。两种结构都利用重量宽度和压缩来降低计算复杂性和带宽。第一种结构使用乘积器,但避免了不必要的乘积,跳过零重量。第二种结构利用比特代表水平的重量宽度,代之以资源密集的MACs,代之以小得多的比特层乘积器(BLMACs)。使用BLMACs还允许可变精确重量,作为可变大小的整数,甚至浮动点。提供了实施第二个结构的一些细节。还讨论了计算编码的轻压缩以及带宽影响。最后,介绍了路径设计的一些执行结果和各种技术。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
已删除
将门创投
5+阅读 · 2019年4月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
0+阅读 · 2021年2月16日
Neural Network Compression for Noisy Storage Devices
Arxiv
0+阅读 · 2021年2月15日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
已删除
将门创投
5+阅读 · 2019年4月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
相关论文
Top
微信扫码咨询专知VIP会员