The recent development of likelihood-free inference aims training a flexible density estimator for the target posterior with a set of input-output pairs from simulation. Given the diversity of simulation structures, it is difficult to find a single unified inference method for each simulation model. This paper proposes a universally applicable regularization technique, called Posterior-Aided Regularization (PAR), which is applicable to learning the density estimator, regardless of the model structure. Particularly, PAR solves the mode collapse problem that arises as the output dimension of the simulation increases. PAR resolves this posterior mode degeneracy through a mixture of 1) the reverse KL divergence with the mode seeking property; and 2) the mutual information for the high quality representation on likelihood. Because of the estimation intractability of PAR, we provide a unified estimation method of PAR to estimate both reverse KL term and mutual information term with a single neural network. Afterwards, we theoretically prove the asymptotic convergence of the regularized optimal solution to the unregularized optimal solution as the regularization magnitude converges to zero. Additionally, we empirically show that past sequential neural likelihood inferences in conjunction with PAR present the statistically significant gains on diverse simulation tasks.
翻译:最近开发的无概率推断法旨在为目标的后端培养一个灵活的密度测深器,并配有一组来自模拟的输入-输出配对的一组投入-输出配对。鉴于模拟结构的多样性,很难为每个模拟模型找到单一的统一推断方法。本文件提议了一个普遍适用的规范化技术,称为Poside-辅助常规化(PAR),它适用于学习密度估测器,而不管模型结构如何。特别是,PAR解决了随着模拟产出增加而出现的模式崩溃问题。PAR通过1(1) KL与寻求属性的方式的反向差异和2)混合,解决了这个后端点模式的退化。鉴于模拟结构的多样性结构的多样性,很难为每个模拟模型模型模型模型模型模型模型的每个模型模型模型模型都提出一种普遍适用的规范化技术,称为Poseride-援助性常规化(Poce-Poce-Per-A),它适用于学习密度估计,而不论模型结构结构如何结构,它都适用于密度估计。我们从理论上证明,正常化的最佳解决办法与非常规化最佳解决办法相近似最佳解决办法的融合为零。此外,我们实验性地模拟地显示,后期的先后性任务与连续性任务与后期的可能性是相当的。