Gromov-Wasserstein distances are generalization of Wasserstein distances, which are invariant under certain distance preserving transformations. Although a simplified version of optimal transport in Wasserstein spaces, called linear optimal transport (LOT), was successfully used in certain applications, there does not exist a notation of linear Gromov-Wasserstein distances so far. In this paper, we propose a definition of linear Gromov-Wasserstein distances. We motivate our approach by a generalized LOT model, which is based on barycentric projections. Numerical examples illustrate that the linear Gromov-Wasserstein distances, similarly as LOT, can replace the expensive computation of pairwise Gromov-Wasserstein distances in certain applications.
翻译:Gromov-Wasserstein距离是瓦塞尔斯坦距离的概括化,瓦塞尔斯坦距离在一定距离保持的变异状态下是不变的。虽然在某些应用中成功地使用了瓦塞尔斯坦空间最优化运输的简化版本,称为线性最佳运输(LOT ), 但迄今为止没有线性格格罗莫夫-Wasserstein距离的标记。在本文中,我们提出了线性格格罗莫夫-Wasserstein距离的定义。我们用基于野蛮中心预测的通用LOT模型来激励我们的做法。 数字实例表明,与LOT一样,线性格罗莫夫-Wasserstein距离可以取代某些应用中双向格罗莫夫-Wasserstein距离的昂贵计算方法。