It is increasingly acknowledged that a priori statistical power estimation for planned studies with multiple model parameters is inherently a multivariate problem. Power for individual parameters of interest cannot be reliably estimated univariately because sampling variably in, correlation with, and variance explained relative to one parameter will impact the power for another parameter, all usual univariate considerations being equal. Explicit solutions in such cases, especially for models with many parameters, are either impractical or impossible to solve, leaving researchers with the prevailing method of simulating power. However, point estimates for a vector of model parameters are uncertain, and the impact of inaccuracy is unknown. In such cases, sensitivity analysis is recommended such that multiple combinations of possible observable parameter vectors are simulated to understand power trade-offs. A limitation to this approach is that it is computationally expensive to generate sufficient sensitivity combinations to accurately map the power trade-off function in increasingly high dimensional spaces for the models that social scientists estimate. This paper explores the efficient estimation and graphing of statistical power for a study over varying model parameter combinations. Optimally powering a study is crucial to ensure a minimum probability of finding the hypothesized effect. We first demonstrate the impact of varying parameter values on power for specific hypotheses of interest and quantify the computational intensity of computing such a graph for a given level of precision. Finally, we propose a simple and generalizable machine learning inspired solution to cut the computational cost to less than 7\% of what could be called a brute force approach. [abridged]
翻译:人们日益认识到,对计划开展的具有多个模型参数的研究进行先验统计力估计,必然是一个多变的问题。对单个利益参数的能量无法可靠地进行单独估计,因为对某一参数的抽样、相关性和解释的差异将影响另一个参数的功率,而所有通常的单一考虑都是平等的。在这种情况下,清晰的解决方案,特别是具有许多参数的模型,要么不切实际,要么无法解决,使研究人员使用模拟力的普遍方法。然而,模型参数矢量的点估计并不确定,而且不准确性的影响也不为人所知。在这种情况下,建议进行敏感度分析,以便模拟可能的可观测参数矢量矢量的多重组合,以了解功率的权衡取舍。这一方法的一个局限性是,在计算出足够的灵敏度组合,以精确性地描绘社会科学家估计的模型中日益高的功率交换功能。本文探讨了如何高效地估计和绘制统计力的方法,用于研究各种模型的组合。首先,最精确的功率分析是,对于确保最起码的精度参数的精度的精度的精度的精度的精度水平,我们为测度的精确度的精确度的精确度的精确度的精确度的精确度。我们为测度的精确度的精确度的精确度的精确度的精确度的精确度。我们为测测测测测测测测测测测测测测测测测测测测测测度的精确度的精确度。