This paper examines the problem of computing a canonical smallest covering region for an arbitrary discrete probability distribution. This optimisation problem is similar to the classical 0-1 knapsack problem, but it involves optimisation over a set that may be countably infinite, raising a computational challenge that makes the problem non-trivial. To solve the problem we present theorems giving useful conditions for an optimising region and we develop an iterative one-at-a-time computational method to compute a canonical smallest covering region. We show how this can be programmed in pseudo-code and we examine the performance of our method. We compare this algorithm with other algorithms available in statistical computation packages to compute HDRs. We find that our method is the only one that accurately computes HDRs for arbitrary discrete distributions.
翻译:本文考察了为任意的离散概率分布计算一个最小的金刚石覆盖区域的问题。 这个优化问题类似于经典的 0-1 knapsack 问题, 但它涉及到对一组可计算无限的集合的优化, 提出了使问题变得非三重性的计算挑战。 为了解决问题, 我们提出了给一个优化区域提供有用条件的理论, 我们开发了一个反复的一次性计算方法, 来计算一个最小的金刚石覆盖区域。 我们展示了如何将它编入伪代码, 我们检查了我们方法的性能。 我们比较了这个算法与统计计算包中的其他算法, 来计算《 人类发展报告》 。 我们发现, 我们的方法是唯一能准确计算任意的离散分布的《 人类发展报告》 。