Cooperative learning, that enables two or more data owners to jointly train a model, has been widely adopted to solve the problem of insufficient training data in machine learning. Nowadays, there is an urgent need for institutions and organizations to train a model cooperatively while keeping each other's data privately. To address the issue of privacy-preserving in collaborative learning, secure outsourced computation and federated learning are two typical methods. Nevertheless, there are many drawbacks for these two methods when they are leveraged in cooperative learning. For secure outsourced computation, semi-honest servers need to be introduced. Once the outsourced servers collude or perform other active attacks, the privacy of data will be disclosed. For federated learning, it is difficult to apply to the scenarios where vertically partitioned data are distributed over multiple parties. In this work, we propose a multi-party mixed protocol framework, ABG$^n$, which effectively implements arbitrary conversion between Arithmetic sharing (A), Boolean sharing (B) and Garbled-Circuits sharing (G) for $n$-party scenarios. Based on ABG$^n$, we design a privacy-preserving multi-party cooperative learning system, which allows different data owners to cooperate in machine learning in terms of data security and privacy-preserving. Additionally, we design specific privacy-preserving computation protocols for some typical machine learning methods such as logistic regression and neural networks. Compared with previous work, the proposed method has a wider scope of application and does not need to rely on additional servers. Finally, we evaluate the performance of ABG$^n$ on the local setting and on the public cloud setting. The experiments indicate that ABG$^n$ has excellent performance, especially in the network environment with low latency.


翻译:合作学习使两个或两个以上数据所有者能够联合培训模型,已经广泛采用合作学习,以解决机器学习培训数据不足的问题。如今,各机构和组织迫切需要合作培训模型,同时将彼此的数据私自保存。为了解决合作学习中的隐私保护问题,安全的外包计算和联合学习是两种典型方法。然而,在合作学习中利用这两种方法时,这两类方法有许多缺点。为了安全外包计算,需要采用半诚实服务器。一旦外包服务器串通或执行其他主动攻击,数据隐私将被披露。对于联合学习来说,很难将模型用于合作培训模式,同时将彼此的数据私自保存在多个缔约方之间。在这项工作中,我们提出多党混合协议框架,AB$,在合作分享(B)和Garbled-Ciruts(G)之间实现任意转换。在以美元为单位的假设情景下,在以美元为单位的常规服务器上,我们设计了一个精细的网络,在以B=美元为单位,我们设计了一个精细的系统, 将一个精细的系统用于学习特定的保密数据操作。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员