The world is rarely static -- many problems need not only be solved once but repeatedly, under changing conditions. This setting is addressed by the "multistage" view on computational problems. We study the "diverse multistage" variant, where consecutive solutions of large variety are preferable to similar ones, e.g. for reasons of fairness or wear minimization. While some aspects of this model have been tackled before, we introduce a framework allowing us to prove that a number of diverse multistage problems are fixed-parameter tractable by diversity, namely Perfect Matching, s-t Path, Matroid Independent Set, and Plurality Voting. This is achieved by first solving special, colored variants of these problems, which might also be of independent interest.
翻译:世界很少是静态的,许多问题不仅需要一次性解决,而且需要在不断变化的条件下反复解决。这种环境通过对计算问题的“多阶段”观点来解决。我们研究了“不同多阶段”的变式。我们研究的是“不同阶段”的变式,在这种变式中,由于公平或尽量减少磨损等原因,大量不同的连续解决方案优于相似的变式。虽然这一模式的某些方面以前已经解决过,但我们引入了一个框架,让我们能够证明,许多不同的多阶段问题可以通过多样性来固定的参数,即完美匹配、标准路径、机器人独立设置和多功能投票。这可以通过首先解决这些问题的特殊、有色化的变式来实现,而这些变式也可能是独立的。