Matrices resulting from the discretization of a kernel function, e.g., in the context of integral equations or sampling probability distributions, can frequently be approximated by interpolation. In order to improve the efficiency, a multi-level approach can be employed that involves interpolating the kernel function and its approximations multiple times. This article presents a new approach to analyze the error incurred by these iterated interpolation procedures that is considerably more elegant than its predecessors and allows us to treat not only the kernel function itself, but also its derivatives.


翻译:内核函数离散产生的矩阵,例如,在整体方程式或取样概率分布的情况下,往往可以通过内插相近,为了提高效率,可以采用多层次的办法,把内核函数及其近似多次相互混合,这一条为分析这些迭代内插程序引起的错误提供了一种新的方法,这种程序比以前的程序要优于以前的程序,使我们不仅能够处理内核功能本身,而且能够处理其衍生物。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
205+阅读 · 2020年2月24日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
架构文摘
3+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年10月12日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2020年9月6日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
205+阅读 · 2020年2月24日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
已删除
架构文摘
3+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员