Time series forecasting is an important problem across many domains, playing a crucial role in multiple real-world applications. In this paper, we propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module, which merges global and local frequency domain information in the model's embedded space. By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns. Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise. The proposed architecture has a number of useful properties: it can be effectively incorporated into well-know forecast architectures, requiring a low number of parameters and producing interpretable results that improve forecasting accuracy. We test the Spectral Attention Autoregressive Model (SAAM) on several well-know forecast datasets, consistently demonstrating that our model compares favorably to state-of-the-art approaches.
翻译:时间序列预测是多个领域的一个重要问题,在多个现实世界应用中发挥着关键作用。 在本文中,我们提出了一个预测架构,将深度自动递减模型与光谱注意模块(SA)相结合,该模块将模型嵌入空间的全球和地方频率域信息合并。通过在光谱域中将时间序列嵌入为随机过程的发生,我们的方法可以确定全球趋势和季节性模式。两个光谱关注模型,全球和本地到时间序列,将这一信息纳入预报中,并进行光谱过滤,以去除时间序列的噪音。拟议架构有若干有用的特性:它可以有效地融入广为人知的预报架构,需要低数量的参数并产生可解释的结果,以提高预测的准确性。我们用几个广为人知的预报数据集测试光谱注意自动递增模型(SAAM),不断证明我们的模型优于最先进的方法。