We develop a structure-preserving parametric model reduction approach for linearized swing equations where parametrization corresponds to variations in operating conditions. We employ a global basis approach to develop the parametric reduced model in which we concatenate the local bases obtained via $\mathcal{H}_2$-based interpolatory model reduction. The residue of the underlying dynamics corresponding to the simple pole at zero varies with the parameters. Therefore, to have bounded $\mathcal{H}_2$ and $\mathcal{H}_\infty$ errors, the reduced model residue for the pole at zero should match the original one over the entire parameter domain. Our framework achieves this goal by enriching the global basis based on a residue analysis. The effectiveness of the proposed method is illustrated through two numerical examples.
翻译:我们为线性秋千方程式制定了一种结构保留参数模型削减方法,在这种公式中,准光化与运行条件的变化相对应;我们采用一种全球基础方法,开发一个参数削减模型,将以美元=mathcal{H ⁇ 2$为基础的内插模型减少的当地基数集中起来;与零点的简单极相对应的基本动力的残余因参数而异;因此,如果将美元=mathcal{H ⁇ 2$和美元=mathcal{H ⁇ infty$错误捆绑在一起,则在零点上减少的模型残留量应该与原来的模型相比整个参数领域相匹配。我们的框架通过在残余分析的基础上充实全球基础来实现这一目标。通过两个数字示例来说明拟议方法的有效性。