We develop a structure-preserving parametric model reduction approach for linearized swing equations where parametrization corresponds to variations in operating conditions. We employ a global basis approach to develop the parametric reduced model in which we concatenate the local bases obtained via $\mathcal{H}_2$-based interpolatory model reduction. The residue of the underlying dynamics corresponding to the simple pole at zero varies with the parameters. Therefore, to have bounded $\mathcal{H}_2$ and $\mathcal{H}_\infty$ errors, the reduced model residue for the pole at zero should match the original one over the entire parameter domain. Our framework achieves this goal by enriching the global basis based on a residue analysis. The effectiveness of the proposed method is illustrated through two numerical examples.


翻译:我们为线性秋千方程式制定了一种结构保留参数模型削减方法,在这种公式中,准光化与运行条件的变化相对应;我们采用一种全球基础方法,开发一个参数削减模型,将以美元=mathcal{H ⁇ 2$为基础的内插模型减少的当地基数集中起来;与零点的简单极相对应的基本动力的残余因参数而异;因此,如果将美元=mathcal{H ⁇ 2$和美元=mathcal{H ⁇ infty$错误捆绑在一起,则在零点上减少的模型残留量应该与原来的模型相比整个参数领域相匹配。我们的框架通过在残余分析的基础上充实全球基础来实现这一目标。通过两个数字示例来说明拟议方法的有效性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员