Besides its linguistic content, our speech is rich in biometric information that can be inferred by classifiers. Learning privacy-preserving representations for speech signals enables downstream tasks without sharing unnecessary, private information about an individual. In this paper, we show that protecting gender information in speech is more effective than modelling speaker-identity information only when generating a non-sensitive representation of speech. Our method relies on reconstructing speech by decoding linguistic content along with gender information using a variational autoencoder. Specifically, we exploit disentangled representation learning to encode information about different attributes into separate subspaces that can be factorised independently. We present a novel way to encode gender information and disentangle two sensitive biometric identifiers, namely gender and identity, in a privacy-protecting setting. Experiments on the LibriSpeech dataset show that gender recognition and speaker verification can be reduced to a random guess, protecting against classification-based attacks.


翻译:除了语言内容外,我们的演讲内容丰富,可以由分类者推断出。学习保护隐私的语音信号代表可以进行下游任务,而不必分享不必要的私人个人信息。在本文中,我们表明,只有在生成非敏感的语音代表时,保护语音中的性别信息才比模拟语音身份信息更为有效。我们的方法依靠通过使用变式自动编码器解码语言内容和性别信息来重建语音信息。具体地说,我们利用分解的代表性学习,将关于不同属性的信息编码为可以独立计算的不同子空间。我们提出了一种新颖的方法,在隐私保护环境中将性别信息编码并解开两个敏感的生物识别特征,即性别和身份。LibriSpeech数据集实验显示,性别识别和语音核实可以降低为随机猜测,防止基于分类的攻击。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
29+阅读 · 2021年2月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年11月5日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Disentangled Lifespan Face Synthesis
Arxiv
0+阅读 · 2021年8月13日
Arxiv
0+阅读 · 2021年8月13日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
27+阅读 · 2018年4月12日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
29+阅读 · 2021年2月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年11月5日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员