This paper presents a novel direct Jacobian total Lagrangian explicit dynamics (DJ-TLED) finite element algorithm for real-time nonlinear mechanics simulation. The nodal force contributions are expressed using only the Jacobian operator, instead of the deformation gradient tensor and finite deformation tensor, for fewer computational operations at run-time. Owing to this proposed Jacobian formulation, novel expressions are developed for strain invariants and constant components, which are also based on the Jacobian operator. Results show that the proposed DJ-TLED consumed between 0.70x and 0.88x CPU solution times compared to state-of-the-art TLED and achieved up to 121.72x and 94.26x speed improvements in tetrahedral and hexahedral meshes, respectively, using GPU acceleration. Compared to TLED, the most notable difference is that the notions of stress and strain are not explicitly visible in the proposed DJ-TLED but embedded implicitly in the formulation of nodal forces. Such a force formulation can be beneficial for fast deformation computation and can be particularly useful if the displacement field is of primary interest, which is demonstrated using a neurosurgical simulation of brain deformations for image-guided neurosurgery. The present work contributes towards a comprehensive DJ-TLED algorithm concerning isotropic and anisotropic hyperelastic constitutive models and GPU implementation. The source code is available at https://github.com/jinaojakezhang/DJTLED.


翻译:本文为实时非线性机械模拟提供了一种新型的直导Jacobian 总计Lagrangeian 清晰动态(DJ-TLED) 的限定要素算法。 节点部队贡献仅使用雅各布运算器表示, 而不是使用变形梯度梯度高温和固定变异度高压, 用于减少运行时的计算操作。 由于这一拟议Jacobian 配方, 也以雅各布运算器为基础, 为压力和压力概念开发了新表达方式, 这些新表达方式也以Jacobian 操作器为基础。 结果显示, 拟议的DJ- TLED在0. 0. 70x 和 0. 0. 08x CPU 中消耗了0. 8 CPU 的解决方案时间, 与最新技术含量TLELED相比, 并分别达到121.72x 和94.26x 速度改进, 使用GPU 加速。 与 TREG/DLED相比,压力和压力概念分析仪的模型为当前G- dromacial- dalationalationalislevoral 提供了一个可使用的GILELEBILED/ drual 的模拟。 。 和GILELD- daldaldaldaldaldaldaldaldaldaldaldal 的模拟工作。 的模拟, 。

0
下载
关闭预览

相关内容

《5G+智慧农业解决方案》22页PPT,三昇农业
专知会员服务
54+阅读 · 2022年3月23日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
《5G+智慧农业解决方案》22页PPT,三昇农业
专知会员服务
54+阅读 · 2022年3月23日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员