Aggregate signatures are used to create one short proof of authenticity and integrity from a set of digital signatures. However, one invalid signature in the set invalidates the entire aggregate, giving no information on which signatures are valid. Hartung et al. (2016) propose a fault-tolerant aggregate signature scheme based on combinatorial group testing. Given a bound $d$ on the number of invalid signatures among $n$ signatures to be aggregated, this scheme uses $d$-cover-free families to determine which signatures are invalid. These combinatorial structures guarantee a moderate increase on the size of the aggregate signature that can reach the best possible compression ratio of $O(\frac{n}{\log n})$, for fixed $d$, coming from an information theoretical bound. The case where the total number of signatures grows dynamically (unbounded scheme) was not satisfactorily solved in their original paper, since explicit constructions had constant compression ratios. In the present paper, we propose efficient solutions for the unbounded scheme, relying on sequences of $d$-cover-free families that we call {\em nested families}. Some of our constructions yield high compression ratio close to \rmv{the information theoretical bound}\todo{the best known upper bound}. We also propose the use of $(d,\lambda)$-cover-free families to support the loss of up to $\lambda-1$ parts of the aggregate.
翻译:集成签名用于从一组数字签名中创建一份真实性和完整性的简短证明。 然而, 一组中一个无效的签名使整个总签名无效, 没有给出任何关于哪些签名有效的信息。 Hartung 等人( ) 在组合组群测试的基础上提出一个容错容忍总签名计划。 鉴于对有待汇总的美元签名中无效签名数量的约束美元, 此计划使用无覆盖的美元家庭来确定哪些签名无效。 这些组合结构保证了对固定美元( frac{ nunlog n} ) 的合并签名规模的适度增加, 从而使得该总签名达到尽可能最佳的美元( folest $) 压缩比率。 我们的一些构建中包含高压缩率的总签名数量( 不受约束的方案) 在其原始文件中没有得到令人满意的解决, 因为明确的构建有固定的压缩比率。 在本文中, 我们建议对无约束的组合方案提出有效的解决方案, 依靠我们称之为 $- em 嵌套家庭 $ $ 的序列 。 我们的一些构建中给出了高压缩率比率, 也提出了我们所知道的“ $\\\\\\ lamb” sultb) sultb) seal- surrupsuppilate supplection