Aggregate signatures are used to create one short proof of authenticity and integrity from a set of digital signatures. However, one invalid signature in the set invalidates the entire aggregate, giving no information on which signatures are valid. Hartung et al. (2016) propose a fault-tolerant aggregate signature scheme based on combinatorial group testing. Given a bound $d$ on the number of invalid signatures among $n$ signatures to be aggregated, this scheme uses $d$-cover-free families to determine which signatures are invalid. These combinatorial structures guarantee a moderate increase on the size of the aggregate signature that can reach the best possible compression ratio of $O(\frac{n}{\log n})$, for fixed $d$, coming from an information theoretical bound. The case where the total number of signatures grows dynamically (unbounded scheme) was not satisfactorily solved in their original paper, since explicit constructions had constant compression ratios. In the present paper, we propose efficient solutions for the unbounded scheme, relying on sequences of $d$-cover-free families that we call {\em nested families}. Some of our constructions yield high compression ratio close to \rmv{the information theoretical bound}\todo{the best known upper bound}. We also propose the use of $(d,\lambda)$-cover-free families to support the loss of up to $\lambda-1$ parts of the aggregate.


翻译:集成签名用于从一组数字签名中创建一份真实性和完整性的简短证明。 然而, 一组中一个无效的签名使整个总签名无效, 没有给出任何关于哪些签名有效的信息。 Hartung 等人( ) 在组合组群测试的基础上提出一个容错容忍总签名计划。 鉴于对有待汇总的美元签名中无效签名数量的约束美元, 此计划使用无覆盖的美元家庭来确定哪些签名无效。 这些组合结构保证了对固定美元( frac{ nunlog n} ) 的合并签名规模的适度增加, 从而使得该总签名达到尽可能最佳的美元( folest $) 压缩比率。 我们的一些构建中包含高压缩率的总签名数量( 不受约束的方案) 在其原始文件中没有得到令人满意的解决, 因为明确的构建有固定的压缩比率。 在本文中, 我们建议对无约束的组合方案提出有效的解决方案, 依靠我们称之为 $- em 嵌套家庭 $ $ 的序列 。 我们的一些构建中给出了高压缩率比率, 也提出了我们所知道的“ $\\\\\\ lamb” sultb) sultb) seal- surrupsuppilate supplection

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月29日
Arxiv
0+阅读 · 2022年9月28日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员