Respiratory rate (RR) is a clinical sign representing ventilation. An abnormal change in RR is often the first sign of health deterioration as the body attempts to maintain oxygen delivery to its tissues. There has been a growing interest in remotely monitoring of RR in everyday settings which has made photoplethysmography (PPG) monitoring wearable devices an attractive choice. PPG signals are useful sources for RR extraction due to the presence of respiration-induced modulations in them. The existing PPG-based RR estimation methods mainly rely on hand-crafted rules and manual parameters tuning. An end-to-end deep learning approach was recently proposed, however, despite its automatic nature, the performance of this method is not ideal using the real world data. In this paper, we present an end-to-end and accurate pipeline for RR estimation using Cycle Generative Adversarial Networks (CycleGAN) to reconstruct respiratory signals from raw PPG signals. Our results demonstrate a higher RR estimation accuracy of up to 2$\times$ (mean absolute error of 1.9$\pm$0.3 using five fold cross validation) compared to the state-of-th-art using a identical publicly available dataset. Our results suggest that CycleGAN can be a valuable method for RR estimation from raw PPG signals.
翻译:呼吸机率(RR)是一种代表通风的临床标志; 呼吸机率(RR)的异常变化往往是健康恶化的第一个迹象,因为身体试图保持向组织提供氧气,因此RR的异常变化往往是健康恶化的第一个迹象; 在日常环境中对RR进行远程监测的兴趣日益增长,这使得光膜扫描监测(PPG)监测可磨损设备是一种有吸引力的选择; PPPG 信号是RR提取的有用来源,因为有呼吸诱导调节器; 现有的基于PPPG 的RR估计方法主要依靠手工制作的规则和手动参数调整; 然而,最近提议了一个端到端深层次的学习方法,尽管这种方法具有自动性质,但使用真实的世界数据对RRR进行远程监测是不理想的; 在本文中,我们提出了一个端到端和准确的管道,用于利用循环感应变网络(Cypecial Aversarial network (CyGANANAN) 重建原始呼吸信号。我们用可贵的PHRRRR-RRR) 校准数据校准方法,可以建议使用一种可贵的方法对RF-CRU-CRRRRRRR-C-C-C-C-C-C-C-C-C-C-C-C-C-CRV-C-C-C-C-C-C-C-C-C-C-CRV-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-