Conversational recommender systems (CRS) have shown great success in accurately capturing a user's current and detailed preference through the multi-round interaction cycle while effectively guiding users to a more personalized recommendation. Perhaps surprisingly, conversational recommender systems can be plagued by popularity bias, much like traditional recommender systems. In this paper, we systematically study the problem of popularity bias in CRSs. We demonstrate the existence of popularity bias in existing state-of-the-art CRSs from an exposure rate, a success rate, and a conversational utility perspective, and propose a suite of popularity bias metrics designed specifically for the CRS setting. We then introduce a debiasing framework with three unique features: (i) Popularity-Aware Focused Learning to reduce the popularity-distorting impact on preference prediction; (ii) Cold-Start Item Embedding Reconstruction via Attribute Mapping, to improve the modeling of cold-start items; and (iii) Dual-Policy Learning, to better guide the CRS when dealing with either popular or unpopular items. Through extensive experiments on two frequently used CRS datasets, we find the proposed model-agnostic debiasing framework not only mitigates the popularity bias in state-of-the-art CRSs but also improves the overall recommendation performance.


翻译:对话建议系统(CRS)在通过多轮互动周期准确捕捉用户当前和详细偏好方面表现出极大的成功,同时有效地指导用户采用更个性化的建议。也许令人惊讶的是,对话建议系统会受到普惠偏见的困扰,这与传统建议系统非常相似。在本文中,我们系统地研究CRS的普惠偏见问题。我们从暴露率、成功率和谈话效用角度展示了现有最先进的CRS中存在的受欢迎偏向,并提出了一套专门为CRS设置设计的受欢迎偏向度衡量标准。然后,我们引入了一个有三种独特特征的偏向性框架:(一) 普惠性软件聚焦学习,以减少普惠性对普惠性预测的影响;(二) 通过配置图谱,冷-启动项目嵌入式重建,改进冷启动项目的建模;以及(三) 双重政策学习,以更好地指导CRS处理受欢迎或非受欢迎的项目。我们通过对两个经常使用的CRS数据集进行的广泛实验,我们发现拟议的C-stimal-degraphis总体业绩框架,但我们在缩小了C-staltical-degraphisal Profisalisfalismismismismismismismismismismismismismismislation。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员