Static recommendation methods like collaborative filtering suffer from the inherent limitation of performing real-time personalization for cold-start users. Online recommendation, e.g., multi-armed bandit approach, addresses this limitation by interactively exploring user preference online and pursuing the exploration-exploitation (EE) trade-off. However, existing bandit-based methods model recommendation actions homogeneously. Specifically, they only consider the items as the arms, being incapable of handling the item attributes, which naturally provide interpretable information of user's current demands and can effectively filter out undesired items. In this work, we consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively. This important scenario was studied in a recent work. However, it employs a hand-crafted function to decide when to ask attributes or make recommendations. Such separate modeling of attributes and items makes the effectiveness of the system highly rely on the choice of the hand-crafted function, thus introducing fragility to the system. To address this limitation, we seamlessly unify attributes and items in the same arm space and achieve their EE trade-offs automatically using the framework of Thompson Sampling. Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play. Extensive experiments on three benchmark datasets show that ConTS outperforms the state-of-the-art methods Conversational UCB (ConUCB) and Estimation-Action-Reflection model in both metrics of success rate and average number of conversation turns.
翻译:合作过滤等静态建议方法受到对冷启动用户进行实时个性化处理的固有限制。 在线建议, 例如多武装土匪方法, 通过互动探索用户的在线偏好和探索开发( EE) 交易来应对这一限制。 但是, 现有的土匪方法模式建议行动是同质的。 具体地说, 它们仅仅将项目视为武器, 无法处理项目属性, 自然地提供用户当前需求的可解释信息, 并能够有效过滤不理想的项目。 在这项工作中, 我们考虑对冷启动用户的谈话建议, 系统既可以请求用户的属性, 也可以以互动的方式向用户推荐项目。 在最近的工作中研究了这一重要的情景。 然而, 它使用手工制作的功能来决定何时询问属性或提出建议。 这种单独的属性和项目模型使系统的有效性高度依赖于手动的模型功能的选择, 从而给系统带来脆弱性。 为了应对这一限制, 我们将同一武装空间的属性和项目与冷启动的用户对话, 并且通过常规数据框架, 实现E- TS- 交易中的所有交易率标准, 直观测试测试中的所有标准数据, 直观测试中, 直观测试中的所有系统的有效性框架显示我们的标准数据。