In this paper we prove a complete panel of consistency results for the discrete de Rham (DDR) complex introduced in the companion paper [D. A. Di Pietro and J. Droniou, An arbitrary-order discrete de Rham complex on polyhedral meshes. Part I: Exactness and Poincar\'e inequalities, 2021, submitted], including primal and adjoint consistency for the discrete vector calculus operators, and consistency of the corresponding potentials. The theoretical results are showcased by performing a full convergence analysis for a DDR approximation of a magnetostatics model. Numerical results on three-dimensional polyhedral meshes complete the exposition.
翻译:在本文中,我们证明配套文件[D.A.Di Pietro和J.Droniou,关于多面体的任意离散的Rham综合体,第一部分:2021年提交的准确性和Poincar\'e不平等]中引入的离散的Rham综合体的完整一致结果小组,包括离散矢量计算操作员的原始一致性和联合一致性,以及相应潜力的一致性。理论结果通过对磁层模型的接近进行完全趋同性分析来展示。三维多面体模组的数值结果完成了插图。