Given an $\omega$-automaton and a set of substitutions, we look at which accepted words can also be defined through these substitutions, and in particular if there is at least one. We introduce a method using desubstitution of $\omega$-automata to describe the structure of preimages of accepted words under arbitrary sequences of homomorphisms: this takes the form of a meta-$\omega$-automaton. We decide the existence of an accepted purely substitutive word, as well as the existence of an accepted fixed point. In the case of multiple substitutions (non-erasing homomorphisms), we decide the existence of an accepted infinitely desubstitutable word, with possibly some constraints on the sequence of substitutions e.g. Sturmian words or Arnoux-Rauzy words). As an application, we decide when a set of finite words codes e.g. a Sturmian word. As another application, we also show that if an $\omega$-automaton accepts a Sturmian word, it accepts the image of the full shift under some Sturmian morphism.
翻译:给定一个$\omega$-自动机和一组替换,我们考虑哪些被接受的单词也可以通过这些替换来定义,特别是是否至少有一个。我们引入了一种使用$\omega$-自动机的 desubstitution 方法来描述通过任意同态的序列下接受单词的前像的结构:这采用元-$\omega$-自动机的形式。我们决定纯代换单词的存在性,以及固定点的存在性。在多个替换(非抹去同态)的情况下,我们决定了可能限制替换序列的情况下是否存在接受无限 substitutable word,例如 Sturmian words 或 Arnoux-Rauzy words。作为一个应用,我们决定一个有限单词的集合是否编码了例如 Sturmian word。作为另一个应用,我们还表明,如果一个$\omega$-自动机接受一个 Sturmian word,则它接受了某个 Sturmian morphism 下的全移图像。