When we use simulation to assess the performance of stochastic systems, the input models used to drive simulation experiments are often estimated from finite real-world data. There exist both input model and simulation estimation uncertainties in the system performance estimates. Without strong prior information on the input models and the system mean response surface, in this paper, we propose a Bayesian nonparametric framework to quantify the impact from both sources of uncertainty. Specifically, since the real-world data often represent the variability caused by various latent sources of uncertainty, Dirichlet Processes Mixtures (DPM) based nonparametric input models are introduced to model a mixture of heterogeneous distributions, which can faithfully capture the important features of real-world data, such as multi-modality and skewness. Bayesian posteriors of flexible input models characterize the input model estimation uncertainty, which automatically accounts for both model selection and parameter value uncertainty. Then, input model estimation uncertainty is propagated to outputs by using direct simulation. Thus, under very general conditions, our framework delivers an empirical credible interval accounting for both input and simulation uncertainties. A variance decomposition is further developed to quantify the relative contributions from both sources of uncertainty. Our approach is supported by rigorous theoretical and empirical study.
翻译:当我们使用模拟来评估随机系统的性能时,用于推动模拟实验的输入模型往往从有限的真实世界数据中估算出来。在系统性能估计中,既存在输入模型,也存在模拟估计的不确定性。如果事先没有关于输入模型和系统平均反应表面的有力信息,我们在本文件中提议一个贝叶斯非参数框架,以量化两个不确定性来源的影响。具体地说,由于真实世界数据往往代表各种不确定性潜在来源造成的变异性,因此,基于二里赫特进程混合(DPM)的非参数性输入模型(DPM)被引入了一种混合的多元分布模型,可以忠实地捕捉到真实世界数据的重要特征,如多式和扭曲性。灵活输入模型的拜伊斯海面在描述输入模型不确定性时具有特征,而这种不确定性是模型选择模型和参数价值不确定性的自动计算。然后,投入模型估计不确定性通过直接模拟传播给产出。因此,在非常一般的条件下,我们的框架为输入和模拟不确定性提供实证可信的期间间核算。我们通过不确定性的理论来源支持的精确度研究进一步量化相对贡献。