Traditional route planning and k nearest neighbors queries only consider distance or travel time and ignore road safety altogether. However, many travellers prefer to avoid risky or unpleasant road conditions such as roads with high crime rates (e.g., robberies, kidnapping, riots etc.) and bumpy roads. To facilitate safe travel, we introduce a novel query for road networks called the k safest nearby neighbors (kSNN) query. Given a query location $v_l$, a distance constraint $d_c$ and a point of interest $p_i$, we define the safest path from $v_l$ to $p_i$ as the path with the highest path safety score among all the paths from $v_l$ to $p_i$ with length less than $d_c$. The path safety score is computed considering the road safety of each road segment on the path. Given a query location $v_l$, a distance constraint $d_c$ and a set of POIs P, a kSNN query returns k POIs with the k highest path safety scores in P along with their respective safest paths from the query location. We develop two novel indexing structures called Ct-tree and a safety score based Voronoi diagram (SNVD). We propose two efficient query processing algorithms each exploiting one of the proposed indexes to effectively refine the search space using the properties of the index. Our extensive experimental study on real datasets demonstrates that our solution is on average an order of magnitude faster than the baselines.


翻译:传统路线规划和近邻询问只考虑距离或旅行时间,而忽略道路安全。然而,许多旅行者倾向于避免风险或不愉快的道路条件,如犯罪率高的道路(如抢劫、绑架、暴乱等)和崎岖的道路。为了便利安全旅行,我们为道路网络引入了新的查询,称为“安全附近邻居”查询。鉴于查询地点$v_l$,距离限制$d_c$和利息点$p_i$,我们定义了最安全的道路路径,从1美元到1美元,这是所有道路从1美元到1美元,长度低于1美元。为了便利安全旅行,我们为道路网络引入了一个新的查询查询点,称为“安全”查询点为Kv_l$,距离限制$d_c$和利息点为1 p_i$,我们定义了最安全的路径,从1美元到1美元,最高的安全路径为1美元,最高的安全路径评分,所有道路评分为1美元到1美元, 美元;考虑到道路安全评分,根据查询地点,我们开发了2个新的标准,我们的安全测算标准,我们使用1号的进度图的进度图为1,我们的安全比标准。我们为2个新的标准,我们为标准,我们用1号的进度图的进度图图的进度图的进度图图为1,我们为1,我们为1,我们用2级的进度图的进度为1,我们为1。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月11日
Arxiv
0+阅读 · 2022年6月10日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员