Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressions. However, mathematical expressions are prone to minor mistakes while the generation objective does not explicitly handle such mistakes. To address this limitation, we devise a new ranking task for MWP and propose Generate & Rank, a multi-task framework based on a generative pre-trained language model. By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions. Meanwhile, we perform tree-based disturbance specially designed for MWP and an online update to boost the ranker. We demonstrate the effectiveness of our proposed method on the benchmark and the results show that our method consistently outperforms baselines in all datasets. Particularly, in the classical Math23k, our method is 7% (78.4% $\rightarrow$ 85.4%) higher than the state-of-the-art.
翻译:数学字问题( MWP) 是自然语言处理中一项具有挑战性和关键性的任务 。 许多最近的研究将 MWP 正式化为一代任务, 并采用了顺序到顺序模型, 将问题描述转换为数学表达式 。 然而, 数学表达方式容易发生小错误, 而生成目标没有明确地处理这种错误 。 为解决这一限制, 我们为 MWP 设计了新的排序任务, 并提议一个基于基因化的训练前语言模式的 Generate & Rank 多任务框架 。 通过与 生成和排序进行联合培训, 模型从自己的错误中学习, 并且能够区分正确和不正确的表达式 。 与此同时, 我们执行专门为 MWP 设计的基于树的扰动和在线更新来提升排名器 。 我们展示了我们在基准上的拟议方法的有效性, 结果显示我们的方法始终优于所有数据集的基线 。 特别是, 在古典的 Math23k 中, 我们的方法是7% ( 78.4% $rightrow 85.4%) 高于 的状态 。