Surface roughness plays an important role in analyzing engineering surfaces. It quantifies the surface topography and can be used to determine whether the resulting surface finish is acceptable or not. Nevertheless, while several existing tools and standards are available for computing surface roughness, these methods rely heavily on user input thus slowing down the analysis and increasing manufacturing costs. Therefore, fast and automatic determination of the roughness level is essential to avoid costs resulting from surfaces with unacceptable finish, and user-intensive analysis. In this study, we propose a Topological Data Analysis (TDA) based approach to classify the roughness level of synthetic surfaces using both their areal images and profiles. We utilize persistent homology from TDA to generate persistence diagrams that encapsulate information on the shape of the surface. We then obtain feature matrices for each surface or profile using Carlsson coordinates, persistence images, and template functions. We compare our results to two widely used methods in the literature: Fast Fourier Transform (FFT) and Gaussian filtering. The results show that our approach yields mean accuracies as high as 97%. We also show that, in contrast to existing surface analysis tools, our TDA-based approach is fully automatable and provides adaptive feature extraction.
翻译:表面粗糙度在工程表面分析中起着重要作用。 它量化了表面地形, 可用于确定由此得出的表面表面完成量是否可接受。 然而, 虽然在计算表面粗糙度方面有一些现有的工具和标准, 但这些方法在很大程度上依赖用户投入, 从而减缓了分析, 并增加了制造成本。 因此, 快速和自动确定粗糙度对于避免由表面无法令人接受的完成量和用户密集分析造成的成本至关重要。 在这次研究中, 我们提出了一个基于地形数据分析( TDA) 的方法, 用以用其纯图像和剖面来分类合成表面表面粗糙度水平。 我们使用来自TDA 的持久性同质图生成含有表面形状信息的持久性图表。 我们随后利用Carlsson 坐标、 持久性图像和模板功能为每个表面或剖面图获取特征矩阵矩阵。 我们将结果与文献中两种广泛使用的方法进行了比较: 快速四倍变换( FFT) 和 Gausian 过滤。 结果表明, 我们的计算结果意味着合成表面表面粗糙程度高达97%。 我们还显示, 与现有的地面分析工具相比, 我们的TD- 提供了完全的适应性方法。