As deep learning becomes the mainstream in the field of natural language processing, the need for suitable active learning method are becoming unprecedented urgent. Active Learning (AL) methods based on nearest neighbor classifier are proposed and demonstrated superior results. However, existing nearest neighbor classifier are not suitable for classifying mutual exclusive classes because inter-class discrepancy cannot be assured by nearest neighbor classifiers. As a result, informative samples in the margin area can not be discovered and AL performance are damaged. To this end, we propose a novel Nearest neighbor Classifier with Margin penalty for Active Learning(NCMAL). Firstly, mandatory margin penalty are added between classes, therefore both inter-class discrepancy and intra-class compactness are both assured. Secondly, a novel sample selection strategy are proposed to discover informative samples within the margin area. To demonstrate the effectiveness of the methods, we conduct extensive experiments on for datasets with other state-of-the-art methods. The experimental results demonstrate that our method achieves better results with fewer annotated samples than all baseline methods.


翻译:随着深层次学习成为自然语言处理领域的主流,对合适的积极学习方法的需求正变得前所未有的迫切。 提出了以近邻分类法为基础的积极学习方法,并展示了优异的结果。 但是,现有的近邻分类法不适合对相互排他性分类法进行分类,因为最近的近邻分类法无法确保不同类别之间的差异。因此,无法发现边距区域的信息样本,而且AL性能受损。为此,我们提议了一个新型的近邻分类法,对积极学习的Margin惩罚(NCMAL) 。 首先,在各类别之间增加强制性的差幅处罚,因此,对不同类别之间的差异和等级内部的紧凑性都有保证。 其次,建议采用新的抽样选择战略在边距区域内发现信息样本。为了证明这些方法的有效性,我们用其他最先进的方法对数据集进行了广泛的实验。实验结果表明,我们的方法比所有基线方法都少加注样,效果更好。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员