When estimating treatment effects, the golden standard is to conduct a randomized experiment and then contrast outcomes associated with the treatment group and the control group. However, in many cases, randomized experiments are either conducted with a much smaller scale compared to the size of the target population or accompanied with certain ethical issues and thus hard to implement. Therefore, researchers usually rely on observational data to study causal connections. The downside is that the unconfoundedness assumption, the key to validate the use of observational data is hard to verify and almost always violated. Hence, any conclusion drawn from observational data should be further analyzed with great care. Given the richness of observational data and usefulness of experimental data, researchers hope to develop credible method to combine the strength of the two. In this paper, we consider a setting where the observational data contain the outcome of interest as well as a surrogate outcome while the experimental data contain only the surrogate outcome. We propose a simple estimator to estimate the average treatment effect of interest using both the observational data and the experimental data.
翻译:暂无翻译