While current multi-frame restoration methods combine information from multiple input images using 2D alignment techniques, recent advances in novel view synthesis are paving the way for a new paradigm relying on volumetric scene representations. In this work, we introduce the first 3D-based multi-frame denoising method that significantly outperforms its 2D-based counterparts with lower computational requirements. Our method extends the multiplane image (MPI) framework for novel view synthesis by introducing a learnable encoder-renderer pair manipulating multiplane representations in feature space. The encoder fuses information across views and operates in a depth-wise manner while the renderer fuses information across depths and operates in a view-wise manner. The two modules are trained end-to-end and learn to separate depths in an unsupervised way, giving rise to Multiplane Feature (MPF) representations. Experiments on the Spaces and Real Forward-Facing datasets as well as on raw burst data validate our approach for view synthesis, multi-frame denoising, and view synthesis under noisy conditions.


翻译:目前的多帧恢复方法将来自多个输入图像的信息使用二维对齐技术组合起来,而最近新视角合成的进展为基于体积场景表示的新范例铺平了道路。在这项工作中,我们引入了第一个基于三维多帧去噪的方法,其计算要求更低,显著优于其二维对应物。我们的方法将多平面图像(MPI)框架用于新视角合成,通过引入一个可学习的编码器-渲染器对在特征空间操作多平面表示。编码器在深度上融合视图信息,以深度为单位进行操作,而渲染器在视觉上融合深度信息,以视图为单位进行操作。两个模块进行端到端训练,并学会以无监督的方式分离深度,产生了多平面特征(MPF)表示。在Spaces和Real Forward-Facing数据集以及原始短串数据上的实验证实了我们的方法在视角合成,多帧去噪和噪声条件下视角合成的有效性。

0
下载
关闭预览

相关内容

【AAAI2023】用于复杂场景图像合成的特征金字塔扩散模型
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
13+阅读 · 2022年10月27日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
13+阅读 · 2018年4月6日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
【AAAI2023】用于复杂场景图像合成的特征金字塔扩散模型
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员