The Poisson equation is commonly encountered in engineering, for instance in computational fluid dynamics (CFD) where it is needed to compute corrections to the pressure field to ensure the incompressibility of the velocity field. In the present work, we propose a novel fully convolutional neural network (CNN) architecture to infer the solution of the Poisson equation on a 2D Cartesian grid with different resolutions given the right hand side term, arbitrary boundary conditions and grid parameters. It provides unprecedented versatility for a CNN approach dealing with partial differential equations. The boundary conditions are handled using a novel approach by decomposing the original Poisson problem into a homogeneous Poisson problem plus four inhomogeneous Laplace sub-problems. The model is trained using a novel loss function approximating the continuous $L^p$ norm between the prediction and the target. Even when predicting on grids denser than previously encountered, our model demonstrates encouraging capacity to reproduce the correct solution profile. The proposed model, which outperforms well-known neural network models, can be included in a CFD solver to help with solving the Poisson equation. Analytical test cases indicate that our CNN architecture is capable of predicting the correct solution of a Poisson problem with mean percentage errors below 10%, an improvement by comparison to the first step of conventional iterative methods. Predictions from our model, used as the initial guess to iterative algorithms like Multigrid, can reduce the RMS error after a single iteration by more than 90% compared to a zero initial guess.


翻译:Poisson 方程式通常在工程学中遇到,例如在计算流体动态(CFD)中,需要对压力场进行校正,以确保速度场的不压缩。在目前的工作中,我们提议了一个全新的全演神经网络(CNN)架构,以推算2D卡斯特兰格网中Poisson方程式的解决方案,并配有不同分辨率,包括右手侧术语、任意边界条件和网格参数。它为CNN处理部分差异方程式提供了前所未有的多功能。通过将原Poisson问题分解成单一的Poisson问题,加上4个不相容的Laplet子问题,来计算压力场。在当前的工作中,我们提议了一个全新的全新式神经网络网络网络网络网络(CNN)网络(Poisson)架构)架构,用来推断2DCartesia 方程式和目标之间的连续的 $Lip 标准。即使预测电网格比以前遇到的更稠度,我们的模型也显示复制正确解决方案配置能力。拟议模型,它比已知的神经网络模型模型模型模型模型模型要好得多,可以纳入单一的初Pobismologson commill 的模型,用来比较10 的模型,用来用来用来比较我们的直方程式。

0
下载
关闭预览

相关内容

在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员