We develop a high accuracy power series method for solving partial differential equations with emphasis on the nonlinear Schr\"odinger equations. The accuracy and computing speed can be systematically and arbitrarily increased to orders of magnitude larger than those of other methods. Machine precision accuracy can be easily reached and sustained for long evolution times within rather short computing time. In-depth analysis and characterisation for all sources of error are performed by comparing the numerical solutions with the exact analytical ones. Exact and approximate boundary conditions are considered and shown to minimise errors for solutions with finite background. The method is extended to cases with external potentials and coupled nonlinear Schr\"odinger equations.
翻译:我们开发了一种高精度电源序列方法,用于解决部分差异方程式,重点是非线性 Schr\'odinger 方程式。精确度和计算速度可以系统和任意地提高到比其他方法更大的数量级。机器精确度在较短的计算时间内可以很容易地达到并持续到长时间的进化时间。对所有误差源的深入分析和定性是通过将数字解决办法与精确的分析解决办法进行比较的方式进行的。考虑并显示精确和近似边界条件,以尽可能减少具有有限背景的解决方案的误差。该方法推广到具有外部潜力的案例和伴生的非线性Schr\'odinger 方程式。