In this paper, we propose an attack method to block scrambled face images, particularly Encryption-then-Compression (EtC) applied images by utilizing the existing powerful StyleGAN encoder and decoder for the first time. Instead of reconstructing identical images as plain ones from encrypted images, we focus on recovering styles that can reveal identifiable information from the encrypted images. The proposed method trains an encoder by using plain and encrypted image pairs with a particular training strategy. While state-of-the-art attack methods cannot recover any perceptual information from EtC images, the proposed method discloses personally identifiable information such as hair color, skin color, eyeglasses, gender, etc. Experiments were carried out on the CelebA dataset, and results show that reconstructed images have some perceptual similarities compared to plain images.
翻译:在本文中,我们建议使用一种攻击方法来阻挡张张张图像,特别是加密时压缩(EtC)应用图像,方法是利用现有的强大的StyleGAN编码器和解码器,首次将相同的图像从加密图像中重建为普通图像,而不是侧重于从加密图像中恢复能够揭示可识别信息的样式。拟议方法通过使用普通和加密图像配对来培训编码器,并采用特定培训战略。虽然最新式攻击方法无法从EtC图像中恢复任何感知性信息,但拟议方法披露个人可识别的信息,如毛发颜色、肤色、眼镜、性别等。 在CelebA数据集上进行了实验,结果显示,重建图像与普通图像有某些概念上的相似之处。