Performing swift and agile maneuvers is essential for the safe operation of autonomous mobile robots. Moreover, the presence of time-delay restricts the response time of the system and hinders the safety performance. Thus, this paper proposes a modular and scalable safety-control design that utilizes the Smith predictor and barrier certificates to safely and consistently avoid obstacles with different footprints. The proposed solution includes a two-layer predictor to compensate for the time-delay in the servo-system and angle control loops. The proposed predictor configuration dramatically improves the transient performance and reduces response time. Barrier certificates are used to determine the safe range of the robot's heading angle to avoid collisions. The proposed obstacle avoidance technique conveniently integrates with various trajectory tracking algorithms, which enhances design flexibility. The angle condition is adaptively calculated and corrects the robot's heading angle and angular velocity. Also, the proposed method accommodates multiple obstacles and decouples the control structure from the obstacles' shape, count, and distribution. The control structure has only eight tunable parameters facilitating control calibration and tuning in large systems of mobile robots. Extensive experimental results verify the effectiveness of the proposed safety-control.


翻译:执行快速和敏捷的操作是自动移动机器人安全操作的关键。 此外,时间延迟的存在限制了系统的反应时间,妨碍了安全性能。 因此,本文件建议采用模块和可扩缩的安全控制设计,使用史密斯预测器和障碍证书,安全和一贯地避免不同足迹造成的障碍。 拟议的解决方案包括一个双层预测器,以补偿瑟沃系统和角度控制环中的时间跨度。 拟议的预测器配置极大地改进了瞬时性能并缩短了反应时间。 使用障碍证书来确定机器人航向角度的安全范围以避免碰撞。 拟议的避免障碍技术与各种轨迹跟踪算法方便地结合,从而增强设计的灵活性。 角度条件是适应性计算并校正机器人航向角度和角速度。 另外, 拟议的方法还容纳了多种障碍,使控制结构与障碍的形状、计数和分布脱钩。 控制结构只有8个金枪鱼可参数, 便于在大型移动机器人系统中进行控制校准和调整。 大规模实验性控制的结果将核查拟议的安全性。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【精通OpenCV 4】Mastering OpenCV 4 - Third Edition 随书代码
专知会员服务
39+阅读 · 2019年11月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2021年2月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员